A voronoi diagram-visibility graph-potential field compound algorithm for robot path planning
نویسندگان
چکیده
Numerous methods have been developed to solve the motion planning problem, among which the Voronoi diagram, visibility graph, and potential fields are well-known techniques. In this paper, a new path planning algorithm is presented where these three methods are integrated for the first time in a single architecture. After constructing the generalized Voronoi diagram of C-space, we introduce a novel procedure for its abstraction, producing a pruned generalized Voronoi diagram. A broad freeway net is then developed through a new -MID (maximal inscribed discs) concept. A potential function is assigned to the net to form an obstacle-free network of valleys. Afterwards we take advantage of a bidirectional search, where the visibility graph and potential field modules execute alternately from both start and goal configurations. A steepest descent mildest ascent search technique is used for local planning and avoiding local minima. The algorithm provides a parametric tradeoff between safest and shortest paths and generally yields shorter paths than the Voronoi and potential field methods, and faster than the visibility graph. It also performs well in complicated environments. © 2004 Wiley Periodicals, Inc. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
منابع مشابه
Roadmap Methods vs. Cell Decomposition in Robot Motion Planning
The task of planning trajectories plays an important role in transportation, robotics, information systems (sending messages), etc. In robot motion planning, the robot should pass around obstacles from a given starting position to a given target position, touching none of them, i.e. the goal is to find a collision-free path from the starting to the target position. Research on path planning has...
متن کاملRobot Motion Planning Using Generalised Voronoi Diagrams
In robot motion planning in a space with obstacles, the goal is to find a collision-free path of robot from the starting to the target position. There are many fundamentally different approaches, and their modifications, to the solution of this problem depending on types of obstacles, dimensionality of the space and restrictions for robot movements. Among the most frequently used are roadmap me...
متن کاملComposite Models for Mobile Robot Offline Path Planning
As new technological achievements take place in the robotic hardware field, an increased level of intelligence is required as well. The most fundamental intelligent task for a mobile robot is the ability to plan a valid path from its initial to terminal configurations while avoiding all obstacles located on its way. The robot motion planning problem came into existence in early 70’s and evolved...
متن کاملMobile Robot Online Motion Planning Using Generalized Voronoi Graphs
In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...
متن کاملGeometric Data Structures and Their Selected Applications
Finding the shortest path between two positions is a fundamental problem in transportation, routing, and communications applications. In robot motion planning, the robot should pass around the obstacles touching none of them, i.e. the goal is to find a collision-free path from a starting to a target position. This task has many specific formulations depending on the shape of obstacles, allowabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Field Robotics
دوره 21 شماره
صفحات -
تاریخ انتشار 2004